About 52 results
Open links in new tab
  1. What exactly is a Bayesian model? - Cross Validated

    Dec 14, 2014 · A Bayesian model is a statistical model made of the pair prior x likelihood = posterior x marginal. Bayes' theorem is somewhat secondary to the concept of a prior.

  2. Posterior Predictive Distributions in Bayesian Statistics

    Feb 17, 2021 · Confessions of a moderate Bayesian, part 4 Bayesian statistics by and for non-statisticians Read part 1: How to Get Started with Bayesian Statistics Read part 2: Frequentist …

  3. Who Are The Bayesians? - Cross Validated

    Aug 14, 2015 · What distinguish Bayesian statistics is the use of Bayesian models :) Here is my spin on what a Bayesian model is: A Bayesian model is a statistical model where you use probability to …

  4. Frequentist vs. Bayesian Probability - Cross Validated

    Dec 20, 2025 · Bayesian probability processing can be combined with a subjectivist, a logical/objectivist epistemic, and a frequentist/aleatory interpretation of probability, even though there is a strong …

  5. What is the best introductory Bayesian statistics textbook?

    Which is the best introductory textbook for Bayesian statistics? One book per answer, please.

  6. Help me understand Bayesian prior and posterior distributions

    The basis of all bayesian statistics is Bayes' theorem, which is $$ \mathrm {posterior} \propto \mathrm {prior} \times \mathrm {likelihood} $$ In your case, the likelihood is binomial. If the prior and the …

  7. r - Understanding Bayesian model outputs - Cross Validated

    Sep 3, 2025 · In a Bayesian framework, we consider parameters to be random variables. The posterior distribution of the parameter is a probability distribution of the parameter given the data. So, it is our …

  8. Aleatoric and Epistemic Uncertainty in the Framework of Bayesian and ...

    Jan 11, 2023 · The subjectivist Bayesian framework according to de Finetti derives Bayesian reasoning from an epistemic probability interpretation under the requirement of "coherence", and there is later …

  9. Bayesian vs frequentist Interpretations of Probability

    The Bayesian interpretation of probability as a measure of belief is unfalsifiable. Only if there exists a real-life mechanism by which we can sample values of $\theta$ can a probability distribution for …

  10. Newest 'bayesian' Questions - Cross Validated

    Jan 29, 2026 · Bayesian inference is a method of statistical inference that relies on treating the model parameters as random variables and applying Bayes' theorem to deduce subjective probability …